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Abstract 

Energy needs and alarming CO2 emissions across the globe have brought considerable attention to 
the development and implementation of renewable energy and energy-saving systems. An important 
aspect of the earth's thermodynamics is that its temperature remains low and constant throughout the 
year. This is in comparison to outdoor air temperatures.The ground temperature is used in Earth Air Heat 
Exchanger (EAHE) systems to pre-condition air before it enters a building. It effectively reduces the 
energy consumption of traditional Heating, Ventilation, and Air Conditioning (HVAC) systems. This paper 
provides a concise review of EAHE technology application in space heating and cooling. The write-up 
also emphasized on the iinfluence of air velocity, diameter,depth, material type and length of a buried 
pipe on the thermal behavior of the EAHE system. EAHE performance is not greatly affected by the 
material of the pipe, in contrast to the length and diameter of the pipe. The findings suggest that the most 
efficient cooling and heating effect is provided by pipes with smaller diameters. Additionally, it is 
indicative that longer pipes improve the cooling/heating output in the EAHE system. Overall, fund 
available for the construction determines the type of pipe material and length to use for an efficient 
EAHE system. Lower air velocities provide higher thermal performance than higher flow rates. 
Furthermore, the integration of the EAHE with other HVAC systems may increase the energy saving. 
Typically, these systems may contribute to reduction of energy consumption for heating by 
approximately 25 – 40%. This percentage range could yield to an EAHE efficiency almost 0.9. 

Keywords: Soil temperature; Earth Air Heat Exchanger system; sustainable energy; thermal comfort; 
heating and cooling systems; Renewable or green energy. 
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Introduction 

Globally, energy consumption in buildings has become a significant issue due to the increasing 
demand for energy and the consequent increase in greenhouse gas emissions. Heating and cooling 
systems are responsible for a large proportion of energy consumption in buildings. Air conditioning 
systems (ACs) are used to maintain interior thermal comfort, using around 15% of all energy consumed. 
By 2050, ACs number is predicted to rise from 1.6 billion to 5.6 billion, increasing the power consumption 
for ACs by thrice1.The COVID-19 pandemic condition posed serious issues about regulating the interior 
environment to reduce virus transmission2–4. 

Therefore, new guidelines have been released to control the spread of COVID-19 in Heating, 
Ventilation, Air Conditioning (HVAC) systems. These guidelines recommend that fresh air should be 
increased up to 100% in enclosed spaces. Also, recirculated air should be avoided. These results in 
increased cooling/heating loads and hence increased energy consumption2. If the world's economy is to 
satisfy these expanding energy demands, the use of renewable energy sources such as biofuel, wind, 
solar and geothermal will be critical5. 

Buildings are responsible for one-third of total energy greenhouse gases emissions6. Buildings' 
thermal performance has been immensely improved over the past few years due to highly intensive 
energy savings measures and technologies. While this is mostly true in developed countries, the energy 
needs for cooling have significantly increased in the warmer developing world due to rising living 
standards, urban temperature increases, as well as global climate change7. For instance, the energy 
used by the construction industry for cooling has been significantly impacted by global climate change. 
As temperatures rise in Greece, researchers predict a 248% rise in energy consumption for building 
cooling by 2100, but a 50% decrease in energy demand for buildings8. In Europe, air conditioning raises 
the typical commercial building's overall energy usage to roughly 40 kWh/m2/y9,10. 

Thermal comfort is directly linked to human productivity. So, office buildings must ensure that their 
thermal environment is of high quality. Heating systems are critical in cold climates for various reasons. 
They provide necessary comfort and sustain a living atmosphere by keeping interior temperatures 
comfortable throughout the winter seasons. Humans would be exposed to extremely low temperatures in 
the absence of heating equipment, causing discomfort, unproductivity, health problems, and even 
hypothermia.. Extreme cold can cause water to freeze and expand, resulting in broken pipes and 
structural issues. Heating systems assist in averting these problems by keeping indoors temperatures 
above freezing, thus safeguarding buildings and their occupants11.  

The minimisation of energy consumption and greenhouse gases emissions can be done by applying 
modern heating techniques like high-efficiency boilers, photovoltaic/thermal collectors, and geothermal 
systems (such as heat pumps and earth air heat exchangers). However, the type of energy source used 
by these systems gives the difference of their climate impact. In fact, to distinguish between the 
combustion of fossil fuels and biomass is essential. The combustion of fossil fuels causes additional CO2 
into the atmosphere. This is due to the release of underground storage of the aged carbon. Biomass 
burning emit CO2 that was absorbed from the atmosphere during the growth of plant. The last type of 
combustion can be considered as a more sustainable and carbon-neutral option12. Moreover, as 
a contribution of the circular economy objectives and waste management, in addition to reduction of 
fossil fuels dependence, it is advisable to use alternative and waste biomass utilisation e.g. organic 
municipal or agricultural wastes and residues, animal manure or forest residues13,14. Potentially, this will 
support environmental preservation.  

A passive climate control technology applicable to farm and residential buildings is an Earth Air Heat 
Exchanger (EAHE). This is a method based mainly on temperature distribution at the surface of the 
ground15. It relies on underground soil temperatures which remain fairly constant at a depth of about 2.5 
to 3 m from the surface (Figure 2), throughout the year. It is usually greater or less than the ambient 
temperature of winter or summer, respectively. That reflects the average yearly air temperature of the 
region16.This is commonly referred to as the ‘critical depth’.17–19. This study gives an overview of EAHE 
technology, with an emphasis on the way they could enhance building energy use and sustainability. By 
summarizing sevral recent research findings on the use of EAHE systems in buildings air conditioning 
purposes, the valuable potential of such suistanable, novel and energy-efficient solution for building are 
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depicted. This review presents the state-of-the-art of EAHE technique, its functional fundamentals and 
the impact of soil properties on the performance of this system. Another interesting highlight in the 
installation of the EAHE is the design parameters of such system (pipe material, pipe diameter, length of 
the pipe and the buried depth of the EAHE pipe, in addition to speed of the air passing through the pipe). 
Therefore, this investigation aimed to concluded the recommended parameters based on various 
research. The main novel sections covered in this study: 

- The operation concept of an EAHE and basic heat transfer modes that happen whitin the system; 

- The major classifications of the EAHE systems (including closed- and open-loop system); 

- The impact of various design parameters on the EAHE performance; 

- Possibility of integrating EAHE with other HVAC system to enhance the energy saving. 

 

1. State-of-the-art of EAHE technology 

The use of Earth Air Heat Exchangers (EAHEs), which may offer natural ventilation and use the 
consistent ground temperature to provide cooling and heating, is one substitute for traditional heating 
and cooling systems. Research has anchored on enhancing several features of EAHE systems, 
including design, operation, and performance evaluation. A number of factors are investigated in studies 
20–22, together with ground heat transfer, airflow patterns, heat recovery efficiency, and control strategies. 
These sustainable systems have many benefits over conventional heating and cooling systems23–26.  
Al-Ajmi et al.27 developed an analytical model for the prediction of air outlet temperatures and cooling 
potential of EAHEs in hot and arid climates. Their model is based on the ratio of the thickness of the 
disturbed soil to the radius of the buried pipe, without considering the thermal resistance of the pipe 
material. This model was implemented into the TRNSYS environment after being validated with previous 
published experimental research. It examined the thermal performance of a typical house combined with 
an EAHE under Kuwaiti climate conditions. It was discovered that the EAHE can provide 30% of the 
summertime demand for cooling energy. There was an analysis for the thermal efficiency of vault roof 
buildings integrated with earth-to-air heat exchangers. The results revealed that during the winter 
months, the temperature in the room increased by about 5.1–15.7°C, whereas in the summer, it 
decreased within the same interval28. With the aid of the FLUENT software, a numerical simulation was 
conducted based on Computational Fluid Dynamic (CFD) to estimate the heating and cooling capacity of 
earth-air-pipe heat exchanger systems29,30. An additional study of a model used a one-dimensional 
transient analytical approach to detect the influence of burial depth on the thermal performance of EAHE 
systems31. 

According to Nayak et al.32 another study evaluated EAHE system for greenhouse heating. The 
system in that study combines a photovoltaic/thermal collector (PV/T) and an EAHE in different 
configurations. During the winter months, it was seen that the greenhouse's interior temperatures rose 
by around 7.1-8.2 °C at night. It is worthy to note that different European countries have licensed 
REHAU EcoairTM for the implementation of the EAHE system when constructing large-scale buildings. 
Beneath a TESCO supermarket building in Zdzieszowice, Poland, there were 0.2 m heat transfer pipes 
with 0.5 m header pipes. Regarding that project, REHAU used an EAHE system to address heating and 
cooling needs of 3,250 m2 of this building space. Heat transfer and header pipes combined to have total 
lengths of 700 m and 50 m, with 2700 m3/hour air flow, respectively. A temperature of 15 °C increment in 
air temperature (from -2 to 13 °C) in the winter season was achieved with this system. This provided 
nearly half of the annual heating demand and was estimated to save 2,000 € per year. Additionally, the 
system generated an annual cooling output of 10,700 kW h, which increased the savings by € 1,000 
from the conventional air conditioner33. In the Italian climate, an EAHE system was also used for both 
cooling and heating of an office building. The study concluded that it is an economical and feasible 
system34. An experimental study of an EAHE was conducted in France for heating and cooling purposes 
of the dining room of floor area 380 m2. This system was combined with 11 pipes which were buried 
under the ground. The diameter of the pipes and their depth were 0.2 m and 2 m respectively. The result 
was 14 kW of cooling power at a flow rate of 7200 m3/hour throughout the months of July and August35. 
Rodrigues et al.36 created a transient, numerical model that simulates the thermal performance of an 
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EAHE system for several soil types at three distinct locations in a Brazilian coastal area. For the 
modeling of the air flow inside the tube, as well as the calculation of the air temperature inside the tube, 
a set of differential equations defining continuity, momentum, and energy was used. For the soil 
temperature distribution, heat conduction equations were utilized. 

Siepsiak37 evaluated an EAHE technique in Poland for about three years, with energy efficiency as an 
indicator in several freshening scenarios. The system provided approximately 124 W of cooling per hour 
and 257 W of heating. This highlighted the system’s capability in improving indoor thermal comfort. The 
outcomes were useful to identify the ideal HVAC system scenarios for engineering designs. Brata et al.38 
evaluated the performance of a EAHE in Timisoara, Romania. The system featured a 35 m long 
exchanger pipe with a 0.2 m diameter, buried at a depth of approximately 2 m. During winter, it supplied 
around 31% of the energy required by the ventilation system. A research conducted by Amanowicz and 
Wojtkowiak for multi-and single pipe EAHE systems in Central Europe, concentrated on energy gains 
and power usage. The findings indicated that a multipipe EAHE can effectively alternate with a single-
pipe system while maintaining similar thermal efficiency and pressure losses, provided that a tube with 
the appropriate diameter is selected. Thus, more appropriate for temperate climates39. Another 
investigation40 examined the efficiency of an EAHE system in Bechar, Algeria. The setup had a PVC 
pipe with a diameter of 11 cm and 66-meter-long, buried at 1.5 m under the ground. During the 
humidification, this system achieved an increment of 19% in relative humidity and a drop of 27% during 
dehumidification. These findings highlight the EAHE's capability to improve hygrometry of buildings in 
arid regions. A study of EAHE systems with pipe lengths between 67 and 107 m, buried at approximately 
2 m, and functioning under different air velocities (500 m³/h, 2500 m³/h and 3000 m³/h) was conducted in 
Germany. A variation of 16 to 51 kWh/m² was realized for the yearly heating energy outcome of the 
system, while between 12 and 23.8 kWh/m² was reported for the annual cooling energy gain41. 

Kaushal42 conducted an experiment in the Lower Himalayan region, where an EAHE system with 
0.5 m/s airflow rate and pipe length of 60 m demonstrated a peak heating potential of around 28 kWh 
and cooling potential close to 15 kWh. The EAHE system also contributed to reducing energy 
consumption for heating by approximately 25–30%43. Xiao et al.44 investigated the thermal behavior of 
an EAHE system integrated into a greenhouse in Northern China. The research merged CFD 
simulations with experiments to assess the system's effectiveness across different seasons. The 
outcomes of the investigations indicate that the EAHE system raised the greenhouse's night-time air 
temperature by 1.4 °C in winter, while in summer it decreased the daytime air temperature by 2 °C. 
Furthermore, the variations between the EAHE's inlet and exit air temperatures were 9.3 °C in winter and 
10.6 °C in summer with an efficiency of 22.49% and 23.52%, respectively. Another study by Jilani45 
utilized CFD simulations to evaluate a Quonset-type greenhouse integrated with thin-film photovoltaics 
(GiTPV) and an EAHE system. The results demonstrated that the EAHE could enhance the greenhouse 
air temperature by 8.2 °C and the plant temperature by 9.1 °C at a mass flow rate of 0.5 kg/s. The GiTPV 
system enables self-sustainability in cold climates by delivering daily electrical energy production of 
15 kWh. Khorchef et al.46 employed a full factorial design to identify optimal configurations of EAHEs for 
winter and summer. The focus was on three variables, airflow, pipe length and thermal conductivity. The 
research highlights that air velocity has a considerable influence, thermal conductivity had a lesser, but 
still significant impact while pipe length had the most significant influence on the temperature regulation. 
The pipe length accounted for more than 59.3% of variability in winter and 49.5% in summer.  

Goyal et al.47 designed and analyzed a unique bank-type EAHE in an experimental setting. The 
research aimed to assess its effectiveness in the hot, dry, and humid climate of Ferozepur, India. With 
a decrease in ambient temperature to 29 °C, this study demonstrated an improved accuracy compared 
to previous investigations. Zhang et al.48 investigated the operation and energy efficiency of EAHEs in 
Lanzhou, China. Applying orthogonal simulation, the research identified that the optimal system 
parameters are 7 m/s as airflow velocity, 20 m pipe length, 4 m burial depth and diameter of 0.1 m. 
These selection enhanced heat transfer efficiency by 38% and reduce unit heat transfer cost by 
8,000 CNY/kW compared to the original design. 
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Table 1: Summary of new case studies on the EAHE behaviour in different sites. 

Authors  Location Performance achieved / design parameters  References 

Siepsiak Poland The system supplied around 124 W of cooling per hour and 
257 W of heating. 

[37] 

Brata et al. Timisoara, 
Romania 

The system has a pipe length of 35 m with a 0.2 m 
diameter, buried at a depth of approximately 2 m. During 
winter, it provided around 31% of the energy required by the 
ventilation system. 

[38] 

Sakhri et al. Bechar, 
Algeria 

The system had a length of 66 m, PVC pipe with a diameter 
of 11 cm and, buried at 1.5 m under the ground. During 
dehumidification this system achieved a drop of 27%  and 
during the humidification, an increment of 19% in relative 
humidity. 

[40] 

Pfafferott Germany Pipe lengths between 67 and 107 m, buried at 
approximately 2 m, and functioning under different air 
velocities (500 m³/h, 2500 m³/h and 3000 m³/h). Outcome of 
the system was between 12 and 23.8 kWh/m²  as the 
annual cooling energy while,16 to 51 kWh/m² is as a yearly 
heating energy. 

[41] 

Kaushal the Lower 
Himalayan 
Region 

The setup has 0.5 m/s airflow rate and pipe length of 60 m. 
It demonstrated a peak heating potential of 28 kWh and 
cooling potential close to 15 kWh. The system contributed to 
reducing energy consumption for heating by almost 25–30% 

[42], [43] 

Xiao et al. Northern 
China 

The differential between the input and outlet air 
temperatures of the EAHE was 9.3 °C in winter and 10.6 °C 
in summer, with an efficiency of 22.49% and 23.52%, 
respectively. 

[44] 

Goyal et al. Ferozepur, 
India 

Assess EAHE effectiveness in the hot, dry, and humid 
climate. It show a decrease in ambient temperature to 29 °C 

[47] 

Zhang et al. Lanzhou, 
China 

The optimal system parameters are 20 m pipe length, 7 m/s 
as airflow velocity, diameter of 0.1 m and 4 m burial depth.  
This design reduce unit heat transfer cost by 8,000 CNY/kW 
and improved heat transfer efficiency by 38%. 

[48] 

 
 

2. EAHE system: Operating principle and Ground Temperature Profile 

The fundamental concept of EAHE is based on multi- or single pipes that are buried under the 
ground. One terminal of the pipe system (the inlet) serves as an ambient outdoor air entry point, while 
the opposite terminal (the outlet) evacuates air into the inside of a building. Fresh air enters through the 
pipe inlet, moving within the pipe and exchanging heat with walls of the pipe which are in contact with 
the underground soil. In this manner, the air in the tube is conditioned as it travels down the pipe. Heat is 
transferred then by convection to or from the soil around it and by conduction in the pipe wall 49,50.  

Profile of ground temperature indicates how soil temperature changes at different depths under the 
surface (Figure 1). It generally displays the fluctuations of temperatures near the surface which is in 
response to daily and seasonal variations. Meanwhile, deeper levels tend to sustain more consistent 
temperatures over the year. This profile plays an important role in the design of EAHE systems.  
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Figure 7: Annual variation in temperature distribution at different depths in Ajmer, India51 

 

3. Classification of the EAHE  

The significant advancements of EAHE leads to diverse system types recognized by changes in 
configurations, materials and control strategies. The classification of this technology can be based on 
pipe orientation, pipe material, pipe configuration and airflow configuration. In addition to the factor of 
development in control strategies: combination and integration with renewable energy sources and 
automated control systems. 

EAHE as sustainable solution can be effectively used alone, but recently, hybrid configurations is 
often selected. Several researchers are working on combining EAHE with various passive techniques to 
enhance system performance. Figure 2 presents the classification of this technology that aids in 
comprehending the development and optimization of EAHE systems. 

The EAHE technique can be classified based on two macro categories:  

a. Source of air entering the system: 

- Open- loop system: the outdoor ambient air (fresh air) is passing through the EAHE pipes. 
While, the air is drawn into the buried pipes, it transfers thermal energy with the adjacent soil 
before it enters the room (Figure 3.(a)).  

- Closed- loop system: recirculating indoor air is used rather than fresh air. The air is extracted 
from the inside of the building, transported through the subterranean pipes to facilitate heat 
exchange with the surrounding soil, and then returned to the building (Figure 3.(b)). 

Based on the literature, the open-loop system is often chosen over the closed-loop system since it 
provides fresh air52. 

b. Pipe layout:  

- Horizontal EAHE system (HEAHE): defined by the installation of pipes in parallel to the 
ground surface (horizontal lines). It presents specific benefits. Among them, its simplicity in the 
implementation in regions where groundwater levels are shallow. Though, it requires large 
ground space, this system still easier and cheaper to install. Particularly, in open spaces. 
However, its thermal efficiency may be affected by changes in soil temperature and moisture 
levels, which typically vary more strongly near the surface53. 

- Vertical EAHE system (VEAHE): the pipes are positioned in a vertical orientation within boreholes 
that extend deep into the ground. VEAHE are frequently favored in urban or highly populated areas 
where land is limited, as well as in situations that demand enhanced heat transfer rates54. This 
system offers multiple benefits more than the horizontal counterparts by tapping into deeper ground 
temperatures55. As the depth increases, ground temperature becomes less affected by external 
environmental conditions. This reduces the influence of seasonal surface temperature changes, 
leading to more consistent and reliable yearly heat transfer. That increase the system’s overall 
performance56,57. However, it usually requires drilling equipment and is more expensive to install. 
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Figure 2: EAHE system classification58 – 60 

 
Figure 3: EAHE with (a) open loop and (b) closed loop 

 
 

4. Heat Exchange Mechanisms within EAHE 

a. Conduction and convection concept: 

Heat exchange mechanisms enable the transmission of heat between the ambient air and the ground 
in EAHE systems. The fundamental principle of the operation of EAHE is based on two primary heat 
exchange mechanisms: 

Conduction: using it as a means of transferring heat, the soil moves heat from warmer (higher 
temperature regions) parts to cooler parts (lower temperature regions). By passing through buried ducts 
or tubes in contact with the ground, the incoming ventilation air can gain or lose heat. 

Convection: since the air and ground are at different temperatures, convection occurs when air flows 
through underground ducts. The heat exchange process is enhanced when cooler air absorbs heat from 
warmer ground and vice versa. Convection plays pivotal role in the heat transfer mechanisms for EAHE. 
This mechanism can be considered as natural convection. However, according to the literature, it is 
usually predominantly forced, driven by a mechanical blower responsible for moving the air within the 
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pipes. Therefore, improving the heat exchange process. For example, Bansal et al.61 analysed the 
performance of EAHE for cooling purposes by varying several factors (pipe material and air velocity). 
Their results presented that the air speed highly influenced the thermal behaviour of the system. In 
general, the effect of natural convection is negligible (minor) when comparing it to the forced convection 
impact. 

Through a combination of these mechanisms, the ground temperature moderates the incoming 
ventilation air's temperature, bringing the indoor temperature closer to equilibrium and achieving a more 
comfortable indoor environment. 

 

b. Fundamental equations in the EAHE physical model: 

Heat transport and fluid dynamics define the performance of an Earth–Air Heat Exchanger (EAHE) 
system. Mass, momentum, and energy conservation are the basic equations applied in EAHE system 
modeling of physical phenomena. The following are the key equations typically applied: 

- Energy Balance of the Air Stream 

Under the assumption of steady-state, one-dimensional flow with minimal axial conduction, the energy 
balance can be expressed as: 

   

  
  

   

  
 

  

       
        

where: Ta: temperature of air inside the pipe (K), Ts: temperature of the pipe wall or surrounding soil (K),  
x: distance along the pipe (m), v: velocity of air (m/s), h: convective heat transfer coefficient (W/m²·K), 
P: inner perimeter of the pipe (m), A: cross-sectional area of the pipe (m²) and   is the air density 
(kg/m³). 

- Forced Convection and Thermal Conductivity: 

The process of heat transfer from the air to the inner wall of the pipe is dictated by forced convection. 
The convective heat transfer coefficient h is frequently determined through the Dittus–Boelter equation: 

  
     

 
   where                      

with: Nu: Nusselt number, Re=
   

 
: Reynolds number,   

   

  
 : Prandtl number, h: convective heat 

transfer coefficient (W/m²·K), ka: thermal conductivity of air (W/m·K), D: pipe diameter (m), ρ: air density 

(kg/m³), v: air velocity (m/s),  : dynamic viscosity of air (Pa·s) and cp: specific heat of air (J/kg·K). 

The adjacent soil is considered a semi-infinite medium, facilitating radial heat conduction from the 
buried pipe. The transient heat conduction in cylindrical coordinates is described as follows: 

   

  
       

    

    
 

 

   

  
) 

where: Ts: temperature of the soil (K), r: radial distance from the pipe center (m),     thermal diffusivity of 
soil (m²/s), ks: thermal conductivity of soil (W/m·K) and ρs: soil density (kg/m³). 

- Heat Transfer Equation in a Buried Pipe: 

The total heat transferred to the air while passing through a buried pipe is expressed as follows: 

                  

where:    is air mass flow rate (kg/s),    is air specific heat (J/kg.K),      is EAHE pipe outlet air 

temperature (°C), and     is EAHE pipe inlet air temperature (°C). 

- Pressure Drop in the Earth-to-Air Heat Exchanger (EAHE) 

The pressure drop in the pipe due to friction is a key factor in EAHE performance, as it affects fan 
power consumption. It is typically calculated using the Darcy-Weisbach equation: 
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with:   : pressure drop (Pa), L: length of the pipe (m), D: internal diameter of the pipe (m) and   
  

  
 if 

Re < 2300 while                    if Re > 400062,63 

The effectiveness ε of an EAHE system quantifies how efficiently the system transfers heat between 
the air and the ground, relative to the maximum possible heat transfer and it can be calculated as: 

  
        

         
 

where: Tout: temperature at the outlet of the pipe (°C), Tin: temperature at the inlet of the pipe (°C) and 
Tsoil: is soil temperature (°C). 

 

5. Advantage of the EAHE system 

EAHE systems provide an eco-friendly method for energy conservation by using the soil's consistent 
temperature for heating and cooling purposes. They serve multiple benefits:  

- By harnessing the stable subterranean temperature to pre-treat incoming air, when it is 
functioning as a primary element unit to another HVAC system. It plays an important role in 
reducing the load of such HVAC system, contributing to significant energy savings in both heating 
and cooling seasons. 

- Supporting sustainability and environmental protection aspect by cutting down energy 
consumption from conventional systems and reduces greenhouse gas emissions. 

- It enhances building thermal comfort and indoor air quality. 

- Featured by improving building energy saving when it is combined with other renewable energy 

technologies (e.g., solar chimneys, heat pumps). 

 

 

6. Impact of design parameters on the EAHE performance 

a. Soil’s undisturbed temperature 

The soil's stable temperature is a crucial factor in the construction of an EAHE system. Given 
homogeneous soil with constant thermal diffusivity, the temperature at each depth z and time t may be 
approximated by the following formula 64,65: 

                   
 

     
  

 
      

  

   
      

 

 
  

   

   
 
 
    

where temperature of the ground at depth z (m) and time t (s) is denoted at Tz,t, whereas Tm represents 
the average soil surface temperature (°C). The amplitude of soil surface fluctuation (°C) is denoted as As, 
and αs representing soil thermal diffusivity (m²/s; m²/day), t signifies the time passed from the 
commencement of the calendar year (day), and to indicates the phase constant of the soil surface (s; 
days). 

Accurately calculating the value of soil's undisturbed temperature is challenging due to the frequent 
lack of knowledge regarding soil properties. Furthermore, it is specified for average soil characteristics. 

Thus, the undisturbed temperature of the soil is a theoretical value that may be regarded as 
equivalent to the yearly average soil surface temperature of a certain area. Additionally, usually the soil 
surface temperature is presumed to be equivalent to the ambient air temperature. 
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b. Impact of Burial Depth  

The ground's temperature shows substantial depth-dependent fluctuation66. To maximize system 
performance while reducing installation costs, it is necessary to determine the ideal burial depth for 
EAHE systems. A clear temperature gradient where temperatures decrease as the depth increases have 
been noted in many investigations67–69. Nonetheless, it was noted that the enhancement in performance 
was minimal beyond depths of 4 m70–72. Variations in depth are impacted by variables including local 
ground temperature profiles, soil characteristics, and climatic conditions.  Sanusi et al.73 determined that 
1 m is the ideal depth in Malaysia, while Khan et al.74 advised 4.5 m for Lahore, Pakistan and Babar et 
al.75 suggested 3.96 m as suitable for Sahiwal, Pakistan. In another investigation, Badescu76 concluded 
that the depth of the buried pipe enhances the thermal potential of the system, however limited to 
a maximum of 4 meters. Mihalakakou et al.77 examined the impact of pipe depth on performance in 
cooling mode, implementing depths of 1 m, 2.1 m, and 3.2 m. The analyses revealed that a pipe 
positioned at a depth of 3 m gave the most effective cooling results. Wu et al.78 conducted an 
examination on the effectiveness of the EAHE system at different depths of buried pipe. The temperature 
variations of the air were observed to range from 7.2 ˚C to 31.7 ˚C, and from 5.6 ˚C to 30.6 ˚C at depths 
of 1.6 m and 3.2 m of the pipe, respectively. 

 

c. Impact of pipe diameter and length 

Ghosal and Tiwari79 examined the influence of buried pipe diameter and length, its depth and mass 
flow rate of air temperatures inside a greenhouse in addition to soil types. Based on the result an 
increment of pipe length between 30-50 m affected the EAHE performance directly. Consequently, a rise 
in air temperature during the winter and a drop during the summer were observed. The primary reason 
for this is that an extended pipe length provides a greater duration for thermal heat exchange to occur 
between the air within the pipe and the ground80. Simultaneously, regarding the impact of the 
underground pipe diameter of the EAHE, an increase in diameter leads to reduced greenhouse air 
temperatures in winter and higher temperatures in summer. This phenomenon is attributed to the 
reduction in heat transmission from the soil or a decreased convective heat transfer coefficient resulting 
from an increase in pipe surface area and a decrease in air flow velocity. Another investigation81 
confirms that the diameter of the pipe plays a crucial role in determining the thermal efficiency of 
environmentally sustainable technology. At specific depths, the temperature of the basement stays 
stable, exhibiting higher values during the winter months and lower values in the summer. Ahmed et 
al.82examined the influence of pipe diameter on the thermal performance of a horizontal earth pipe 
system, utilizing pipes with diameters of 0.400m, 0.200 m, 0.125 m and 0.062 m. They found that the 
smaller diameter pipe yields the most effective cooling effect.  

Regarding the length of pipe effect, Agrawal et al.83 observed that the EAHE air temperature 
decreases in the summer and rises in the winter season as the length of the pipeline increases. Yet, the 
performance rate fluctuates based on climatic conditions and geographical location. In this experiment, it 
was observed that for the 50 m pipeline length, the outlet temperature of the EAHE system consistently 
matched the basement temperature. Bansal et al.84 performed an analysis of thermal performance for 
different lengths of EAHE pipes in India. The study also examined the impact of soil thermal conductivity 
and the duration of continuous EAHE operation. The findings from an investigation by Zhang et al.67 
indicate that an optimal pipe length of 80 m is recommended to ensure effective pre-heating and pre-
cooling performance for the EAHE-assisted building air conditioning system year-round. Given the 
balance between thermal efficiency and construction expenses of the EAHE system, an additional 
increase in pipe length might not result in beneficial results. In this investigation the influence of pipe 
diameter was also conducted. It ranges from 100 mm to 200 mm, affecting the airflow rate within the 
buried pipe. Increasing the pipe diameter has a minor effect on outlet air temperature, resulting in 
a small rise during summer and a decrease in winter. The typical precooling performance and daily 
cooling capacity range from 9.5 °C to 9.2 °C and from 20.1 kWh to 19.5 kWh, respectively. Comparable 
outcomes can be noted during the heating season. In an EAHE system, the difference in air temperature 
between the inlet and outlet of the pipe is enhanced by extending the length of the pipe85, while it 
diminishes with a rise in pipe diameter8682 
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d. Impact of material of the pipe 

The conclusion drawn from various studies indicates that pipe materials selection primarily centers on 
the material's availability and associated costs. The outlet temperature of the buried pipe can be more 
effectively reduced by using materials with a higher thermal conductivity. Parametric research was 
conducted in EnergyPlus software to compare several pipe materials, specifically PVC, polyethylene 
(PE), clay, Polyvinyl Chloride (PVC) and brick73. This research expands the classification of 
subterranean pipelines. The results indicated that clay pipes produce the lowest output air temperature 
between the four types of pipes. In another side, Bansal et al.87 examined the thermal capacity and 
evaluated the air conditioning potential of two EAHE systems constructed mostly from steel and PVC 
materials. The authors determined that the pipe material had no strong effect on the effectiveness of the 
EAHE system. Serageldin et al.88 tested the efficiency of an EAHE in Egypt's hot and cold climate.  
A mathematical model for energy conservation based on one-dimensional, unsteady and quasi-state 
equation were used or produced?. In addition, a three-dimensional steady-state CFD ANSYS Fluent 
simulation model for predicting air and soil temperatures have been developed. Three various pipe 
materials were utilized: PVC, steel, and copper.  Output air temperatures were 19.8 °C for copper and 
steel and 19.7 °C for PVC pipe. This led to the conclusion that there is no noticeable difference in the 
output air temperature for the different pipe materials. Menhoudj et al.89 conducted a comparison of the 
performance of the EAHE system using two pipe materials, Zinc and PVC. The findings indicated that 
the air temperature drop was 6.5°C for the Zinc pipe and 6°C for the PVC pipe. Consequently, the cost 
of the pipe material and its lifespan come out as the most important factors in the selection process, 
rather than the heat transfer properties. All the above-stated research results presented that the material 
of the pipe has a minimal (negligible) effect on the thermal performance of the EAHE system. 

 

e. Impact of air flow  

The airflow rate predominantly dictates the system's capability for cooling or heating and its overall 
performance90,91. Benrachi et al.92 demonstrated that an increase in velocity of the wind from 2 m/s to 
2.5 m/s led to a significant reduction in cooling effectiveness, dropping from 60% to 33%.  Furthermore, 
Bhandari et al.93 investigated how airflow velocity affects heat transfer rates, showing that a reduction in 
velocity and an increase in diameter lead to a lower pressure drop across the pipe length throughout 
airflow. Bansal et al. examined the influence of flow velocity (2.0, 3.2, 4.0, and 5.0 m/s) and contrasted 
the simulation results with the experimental data obtained. The outcomes showed a reliable agreement 
between experimental data and simulated results. Using a pipe length of 24 m gives cooling 
performance vary from 8 to 13 °C for the above speeds air61,87. Dubey et al.94 observed a decrease in air 
temperature from 9 to 4.2 °C, alongside a reduction in the coefficient of performance (COP) from 6 to 3.7 
as the air velocity varied from 4 to 12 m/s. A mathematical parametric study was carried out by Ahmed et 
al.82 employing four separate airflow rates to assess the impact of air velocity on the thermal 
performance of the pipe–Earth technique during the cooling process.  The report indicated that an air 
flow of approximately 1.4 m/s was the optimal choice for summer efficiency. Other studies by 
Mihalakakou et al.95–97 documented how air velocity affects the EAHE system's ability to maintain thermal 
comfort. The researchers looked at the EAHE system's evaporative temperature and how it changed in 
response to a modest change in air velocity. It has also been noted that the system’s heating capacity 
decreases as the air velocity increases. The effectiveness of an EAHE system may be measured by the 
number of Reynolds, according to Abdelkrim et al.98. They found that when the Reynolds number 
increases, the out-flow air temperature rises because the air residence time within the pipe reduces. 

 

7. Effect of soil properties on the EAHE’s system performance 

The thermo-physical qualities of the soil have a significant impact on the thermal performance of an 
EAHE system. Soil thermal conductivity and diffusivity are two important parameters of the EAHE 
system. Due to the high temperature difference and rapid heat transfer rate, the system performs better 
as the thermal conductivity increases. High thermal diffusivity, on the other hand, increases the quantity 
of heat transmission from soil to pipes via conduction and from pipes to air via convection17,51. Thermal 
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conductivity, specific heat, and density of soils are the most important thermo- physical properties that 
determine the performance of the EAHE system. Therefore, as the most important soil property for the 
EAHE system, thermal diffusivity plays a significant role. Because heat accumulates in the soil layers 
near the pipe and does not transfer to the next layers quickly, the soil gradually becomes thermally 
saturated, reducing the performance of the EAHE system99. There is a direct correlation between 
thermal conductivity and thermal diffusivity of soil. The investigation of Mathur et al.100 present that soil 
with a higher thermal diffusivity transfer heat more rapidly from nearby soil to outer subsoil, which 
increases heat transfer rates. In this study the thermal performance of EAHE systems was evaluated 
using three different soil thermal diffusivities: 1.37×10(-7) m2/s,4.37×10(-7) m2/s and 9.69×10(-7) m2/s. It is 
important to note that soil thermal conductivity is significantly affected by temperature. In the study by 
Bansal et al.84 the impact of duration of operation and the thermal conductivity of the soil on the EAHE 
performance was analysed by choosing 3 different soils. They highlighted the significance of involving 
soil thermal characteristics in the design and functioning of EAHE. They observed that even during 
extended continuous operation, EAHE system installed on soil with enhanced thermal conductivity has 
higher thermal performance. The phenomenon of improved thermal behaviour of soil characterised by 
high thermal conductivity is attributed to the fast dissipation of heat from the soil layers Moreover, Donde 
and Maurya101 experimentally characterised the thermal property of soil for EAHE applications. They 
investigated the influence of different soil types on the system performance, particularly, assessing the 
soil's potential to store or dissipate heat. Their results stated that for prolonged continuous operation of 
EAHE, the soil with lower thermal storage capacity but higher thermal conductivity and diffusivity, is 
preferable. This soil may rapidly transfer heat from the pipe, ensuring a greater difference in temperature 
between the air within the pipe and the adjacent soil. Therefore, enhancing heat exchange efficiency.  

 

8. Opportunities of integrating EAHE with other system (Future work): 

In recent years, research and development towards energy saving has grown as a significant focus 
for researchers worldwide. For efficient energy saving, the use of EAHE as primary pre-conditioning unit 
to another system should be more analyzed.  

Besides conditioning air for indoor comfort, the EAHE system may be modified for preheating the 
combustion air supplied to boilers, furnaces, or industrial burners in winter. This is particularly 
advantageous in settings where external temperatures fall significantly beyond the soil temperature; 
where the cold ambient air is drawn through the pipes of the EAHE and absorbs heat from the warmer 
ground. The preheated air is then fed into the combustion chamber. This reduces the energy needed to 
reach optimal combustion temperatures and provides complete combustion and lower emissions; helps 
in fuel saving while improving combustion quality.  

In another applications, when combining passive geothermal energy with active air distribution, EAHE 
may be linked with an Air Handling Unit (AHU) to raise the energy efficiency of heating, ventilation, and 
air conditioning systems in buildings102. In this configuration, outdoor air is sent through underground 
pipes, typically located 1.5 to 4 m deep, where it participates in heat exchange with the surrounding soil. 
The air is cooled or heated depending on the season. Later, the temperature-moderated air exits the 
pipes and is delivered to AHU. It additionally filters, humidifies or dehumidifies, heats, or cools the air as 
necessary to achieve the preferred indoor comfort conditions. The AHU afterwards distributes the treated 
air within the building using several terminals. This will result in various benefits. For instance, in energy 
savings where it decreases the thermal load on the AHU by pre-conditioning the air; reduces the HVAC 
size and enhances comfort due to the better stable and comfortable indoor air conditions. 

 

Conclusion 

With the growing demand for sustainable building solutions and energy saving, EAHE systems are 
likely to become more widely adopted in the future. An overview of the EAHE system has been provided 
in this study, along with some important parameters to consider. These are the key conclusions. 
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- The EAHE system can provide adequate cooling and heating for small and large buildings with 
substantial energy savings. 

- The performance of EAHEs is affected by various factors, such as the type of soil, the depth and 
length of the system, the airflow rate, and the thermal properties of the heat exchanger. This 
technology should also be designed to minimize heat losses during the heating and cooling 
cycles, to maximize the system's efficiency. 

- The cooling and heating capacity of the EAHE system increases with installation depth. However, 
beyond a certain depth (more than 4 m), no substantial enhancement in performance is 
expected. Rather, the excavation cost of the trench escalates with the depth of the pipe. 

- Research findings indicate that the pipe material has a minimal (negligible) effect on the thermal 
performance of the EAHE system.  Consequently, the expense of the pipe, its longevity, and its 
corrosion resistance are essential criteria for choosing the pipe material.  

- PVC pipe is favored for the EAHE system due to its low cost, flexibility, superior corrosion 
resistance and ease of installation. 

- The length of the buried pipe plays a critical role, as it directly affects the heat transfer surface 
area and the residence time of the air-fluid. Therefore, the extended pipe offers an extensive 
route for heat transfer and 80-120m is the recommended pipe length. 

- EAHE pipe with a smaller diameter offers the most effective cooling and heating impact. 

- A higher moisture content and good thermal conductivity of the soil surrounding the EAHE pipe 
can improve the performance of the system. Thus watering the ground is a suitable solution to 
raise the thermal conductivity of the soil. 

- Better thermal performance is achieved at lower air velocities compared to higher flow rates. This 
phenomenon occurs because the air remains in contact with the surrounding soil for a longer 
duration, allowing more effective heat exchange. In contrast, at higher velocities, the reduced 
residence time limits the air's ability to reach thermal equilibrium with the soil. 

- A system such as this should be used in extreme atmospheric conditions since the temperature 
difference between the ambient air and undisturbed ground will be greater. 
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Súhrn 

Energetické potreby a alarmujúce emisie CO2 na celom svete pritiahli značnú pozornosť k vývoju 
a implementácii obnoviteľných zdrojov energie a systémov na úsporu energie. Dôležitým aspektom 
termodynamiky Zeme je, že jej teplota zostáva nízka a konštantná počas celého roka. V porovnaní 
s vonkajšími teplotami vzduchu. Teplota zeme sa používa v systémoch výmenníkov tepla zem-vzduch 
(EAHE) na predúpravu vzduchu pred jeho vstupom do budovy. Účinne znižuje spotrebu energie tradičných 
systémov vykurovania, vetrania a klimatizácie (HVAC). Tento článok poskytuje stručný prehľad aplikácie 
technológie EAHE pri vykurovaní a chladení priestorov. Článok tiež zdôraznil vplyv rýchlosti vzduchu, 
priemeru, hĺbky, typu materiálu a dĺžky zakopaného potrubia na tepelné správanie systému EAHE. Výkon 
EAHE nie je výrazne ovplyvnený materiálom potrubia, na rozdiel od dĺžky a priemeru potrubia. Zistenia 
naznačujú, že najúčinnejší chladiaci a vykurovací účinok zabezpečujú potrubia s menšími priemermi. 
Okrem toho je svedčiace o tom, že dlhšie potrubia zlepšujú chladiaci/vykurovací výkon v systéme EAHE. 
Celkovo dostupné finančné prostriedky na výstavbu určujú typ materiálu a dĺžku potrubia, ktoré sa majú 
použiť pre efektívny systém EAHE. Nižšie rýchlosti vzduchu poskytujú vyšší tepelný výkon ako vyššie 
prietoky. Okrem toho integrácia EAHE s inými systémami HVAC môže zvýšiť úsporu energie. Tieto 
systémy môžu typicky prispieť k zníženiu spotreby energie na vykurovanie približne o 25 – 40 %. Toto 
percentuálne rozpätie by mohlo viesť k účinnosti EAHE takmer 0,9. 

Klíčová slova: Teplota pôdy; systém výmenníka tepla zem-vzduch; udržateľná energia; tepelná 
pohoda; vykurovacie a chladiace systémy; obnoviteľná alebo zelená energia. 
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